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ON RECONSTRUCTING TRAJECTORIES IN

THE VENUS LOWER ATMOSPHERE

P. Argentiero
G. Wyatt

ABSTRACT

This paper utilizes a Monte Carlo technique in
order to demonstrate the feasibility of processing in­
situ measurements of temperature, pressure, and
molecular weight in order to reconstruct trajectories
in the Venus lower atmosphere. The technique as­
sumes that the Venus lower atmosphere obeys the
ideal gas law and the hydrostatic equation. Time cor­
relations in the data are assumed to exist. It is also
shown that the errors in trajectory, reconstruction
are due mostly to noise on the data rather than inac­
curacies in the numerical technique.
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ON RECONSTRUCTING TRAJECTORIES IN
THE VENUS LOWER ATMOSPHERE

INTRODUCTION

The problem of reconstructing a trajectory in an atmosphere has been dis­
cussed in the literature. See for instance Preslin [1], Peterson [2], Sommer
and Boissevain [3]~ and Seiff [4]. These studies assume that in situ measure­
ments of acceleration, temperature and pressure are available. In the Venus
lower atmosphere the density is so great that measurements from on board ac­
celerations are not likely to be useful. Thus trajectory reconstruction in the
Venus lower atmosphere must rely on range rate measurements and in-situ
measurements of pressure, temperature, and molecular weight. The use of
these data types in a standard parameter estimation mode requires that the
planetary atmosphere be characterized by a relatively small number of
parameters. This is usually done by assuming that the atmosphere satisfies
the hydrostatic equation and the ideal gas law with the temperature profile piece­
wise linear with a small number of breakpoints. In this case the surface pres­
sure and the temperature at the breakpoints along with the height of the break­
points are parameters which define an atmosphere. A standard Kalman filter
approach can then be implemented and an estimate of the trajectory can be ob­
tained. The atmospheric parameters can be estimated as part of the state or
they can be placed in a consider mode where they are not estimated but their
associated uncertainties are permitted to have an influence on the filter behavior.
The ensemble properties of such a filter can be studied in an error analysis
mode and if the modeling assumptions are valid and if the non-linearities of the
problem are not severe, the promulgated covariance matrix of such an error
analysis represents an accurate measure of the statistical quality of the estimate.

Unfortunately there is no reason to believe that the non linearities of the
problem are negligible. There are als9 present some obvious modeling errors
in thi~ approach. For instance it is doubtful if the temperature profile of the
lower Venus atmosphere is approximately piecewise linear. The significance of
such modeling errors is not now known. Consequently the results of an ensemble
calculation associated with an error analysis of the parameter estimation tech­
nique is not to be trusted as an accurate indicator of the statistical quality of the
technique. Another method for obtaining information concerning the statistical
spread of the parameter estimation procedure is to perform a Monte Carlo study.
But the computational algorithms for the implementation of the parameter esti­
mation technique are too lengthy to permit such a possibility. One is forced to
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conclude then that there is no effective way of determining the statistical quality
of the standard parameter estimation technique as applied to trajectory determin­
ation in the Venus lower atmosphere.

There is a way out of this impasse. If one is willing to forego the direct
use of range rate data, then a computational algorithm can be devised which
utilizes temperature, pressure, and molecular weight data in order to estimate
-the trajectory. This algorithm is sufficiently simple that its ensemble proper­
ties can be accurately determined by means of a Monte Carlo study. This algo­
rithm is obtained by assuming that measurements are unbiased and that the
atmosphere obeys the hydrostatic equation and the ideal gas law. No assump­
tions concerning the temperature profile are necessary. This paper is a report
on a Monte Carlo study of such an estimation procedure.

ESTIMATING ATMOSPHERIC TRAJECTORIES WITH PRESSURE,
TEMPERATURE, AND MOLECULAR WEIGHT DATA

Assume that an atmosphere is perfectly mixed, and that it obeys the per­
fect gas law and the hydrostatic equation. Let P(II), T(II), p (II) be respectively
the pressure, temperature and density of the atmosphere at a height H above
the surface. Then

and

P (H) R T(H)
P(H) =

M

dP(H) -. (H)
---:d'"""H--'- - - g p

(1)

(2)

where R is the universal gas constant, M is the molecular mass of the gas and g

is the gravitational constant of the planet. (For present purposes the variation
of g with H can be ignored.)

Assuming a ninety degree flight path angle, the trajectory of a probe in the
Venus lower atmosphere can be described by a height versus time function H(t).
Define the following functions

pet) =P [H(t)J

T(t) =T [H(t)J

p ( t) = P [H( t )J

2

(a)

(b)

(c)

(3)



Equations 1 and 2 yield

dH(t) _ -RT(t)
dP ( t) - gP ( t ) M

By multiplying both sides of equation 4 by DP(t)/Dt one obtains

dH(t) _ -R T(t) dP(t)
~ - gM P(t) dt

and equation 5 yields

R ftoH(t) = gM T(t) dP(t) dt
P(t) d t

t

(4)

(5)

(6)

where to is the time of impact. Equation 6 provides an effective algorithm for
reconstructing the height of the probe as a function of time.

The salient difficulty with the approach suggested by equation 6 is that the
readings of temperature and pressure are available in discrete rather than
continuous form. Thus both the derivative of pressure with respect to time and
the integration of equation 6 must be obtained according to some numerical
procedure. It is by no means obvious which numerical techniques would yield
the smallest errors in the reconstruction of the trajectory. The difficulty is
further compounded by the fact that there is noise on the data. Thus the error
in trajectory reconstruction is ultimately the result of the interaction between
the deterministic features of the numerical technique and the ensemble features
of the data noise. The only systematic way to decide which of a set of numerical
techniques yields the smallest errors in trajectory reconstruction is to test each
in a Monte Carlo mode and to choose the numerical technique with the smallest
critical error values as the most accurate. In the process one not only de­
termines the best numerical technique but he also establishes the critical values
of the error distribution of the resultant trajectory determination if the technique
were utilized.

THE MONTE CARLO SIMULATION

In order to perform a Monte Carlo simulation, one must first construct a
I

deterministic model of reality. In this case reality consists of a model of the
Venus atmosphere and a probe with a certain trajectory which is sampling the

3



temperature, pressure, and molecular weight of the atmosphere according to a
time schedule.

Since the atmosphere is assumed known and the trajectory and data sampling
schedule are fixed, one knows the true values of the collected data. A random
number generator is used to add noise to the true values of the data. This noise
is so 'constructed as to follow a predetermined probability law. After the noise
has been added, the resultant numbers are processed by the computational
algorithm in use and an estimate of the trajectory is obtained. Since the true
value of the trajectory is assumed known, one can- determine the errors which
the algorithm yields. The entire process can be repeated many times and an
estimate of, say, the 95% critical value of the error in trajectory estimation at
any given height can be obtained. The noise on the measurements was assumed
to be zero mean and normally distributed. The assumed standard deviations as
obtained from John Ainsworth of the Laboratory For Planetary Atmospheres,
G.S.F.C., are displayed in Tables I and II.

Table I
Standard Deviation of Pressure Measurements

Range in Earth Standard Deviation as Percent of
Atmosphere Largest Value in Interval

90 - 20 .1%
20 - 4 .2%

4 - .08 .4%
.08 - .05 .5%

Table II
Standard Deviation of Temperature Measurements

Range in Kelvin Standard Deviation as Percent of
Length of Interval

800 - 600 K 1%
600 - 400 K .75%
400 - 300 K .60%
300 - 200 K .5%

The G.S.F.C. 3609 model for the Venus atmosphere was used for our simu­
lations. The probe trajectory was that of an entry probe with a 90° flight path
angle and a parachute opening at 50 km above the surface. The reconstruction
process is assumed to begin at 75 km above the surface. The trajectory was
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constructed in the G.S.F. C. 3609 atmosphere by using the planetary explorer
main probe configuration and assuming the quasi-static approximation. This
approximation implies that the downward force of gravity is always in approxi­
mate equilibrium with the upward drag force. In effect this provides the velocity
of the probe as a function of the density of atmosphere and makes for an easy
trajectory reconstruction. Recently, this technique has been compared to a
fourth order Runge Kutta technique and has been found to be valid in the Venus
lower atmospherep Reference [5].

Pressurep temperature, and molecular weight were assumed to be sampled
a total of seventy-six times. The time intervals between measurements were
constant and the first measurements were taken at 75 km and the last at the
surface. Certain systematic errors in the measurement processes induce time
correlations in the data. To model these measurements as independent is to
make an optimistic error since this exaggerates the information content of the
data. In this study the authors assume a positive correlation of .8 between a
temperature or pressure measurement and the previous temperature or pres­
sure measurement. These correlations become respectively .6, .4 and .2 when
the time lag becomes 2, 3 and 4. When the time lag is 5 or greater we assume
the measurements are independent. No cross correlation between the tempera­
ture and the pressure measurements are assumed to exist. The standard devia­
tion of the noise on the measurements of molecular mass is assumed to be .5%
of the nominal value of 43 as used in the 3609 model of the Venus atmosphere.
A systematic error of .001 cm/sec 2 was assumed to have been made in the cal­
culation of the surface graVitational acceleration of Venus.

The standard way to obtain Monte Carlo estimates of 95% critical values of
errors at various heights is to execute the algorithm under investigation N times
with the noise on the data chosen each time according to the probability law
defined above. Each of the N trajectories so obtained can be compared with the
trUe trajectory and at any given height, the 95% largest error from the ensemble
of N errors is the optimal estimate of the 95% critical value of the error of the
trajectory at that height. Unfortunately this optimal Monte carlo technique when
applied to this problem, leads to intractible problems both with regard to com­
puter time and core storage. Thus a sub optimal Monte carlo technique was
utilized. The details of this technique are discussed in the appendix. This sub­
optimal technique does not sacrifice rigor and one can be sure to a confidence
level of 99% that the estimate of a critical value it yields is larger than the
correct critical value. In this sense the technique can be used to produce con­
servative estimates of critical values.
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RESULTS AND CONCLUSIONS

Figures 1 through 4 provide graphs of respectively the 90%, 95%, 97% and
99% critical values of the error in trajectory reconstruction as a function of
height above the surface. The algorithm used was implied by equation 6 with
the derivative of pressure with respect to time calculated by assuming that
pressure is exponential with time and with the integration implemented with
the aid of a Simpsonvs rule algorithm. When the pressure derivatives are cal­
culated by means of a simpler linear approximation, the errors increase by al­
most an order of magnitude. The use of a Simpsonvs rule in order to implement
the integration instead of a simpler trapezoidal rule purchased an improvement
in the errors of about 5%. Obviously the way the pressure derivatives are esti­
mated is far more significant in the trajectory reconstruction than how the
integration is performed.

From Figures 1 through 4 it is evident that at least to a height of 50 km
above surface the processing of temperature and pressure data according to
equation 6 yields a good estimate of the probe~s trajectory. Above this height,
the modeling assumptions~ primarily the assumption that pressure measure­
ments are exponential in time, become increasingly invalid. This above­
mentioned exponential assumption rests on the assumptions that pressure is
exponential with height and that probe velocity is constant. Clearly the greater
the height above surface the greater is the acceleration the probe processes and
the more questionable the assumption of constant velocity becomes. This is the
primary impediment to the extension of this trajectory estimation technique to
greater heights above surface. Of course, the techniqueVs effectiveness could
be extended considerably if the data acquisition rates were altered so that the
higher the probe is above surface the greater the data acquisition rate. Although
the authors have not done so, the possibility of extending this technique to much
greater heights by means of a varied data acquisition rate could be systematically
studied with the aid of the Monte carlo techniques demonstrated in this report.

It is of some value to understand how much of the errors in trajectory re­
construction is due to noise on the data and how much is due to inaccuracies
inherent in the numerical technique that one decides to use. In the present case
such information is easy to obtain. Figure 5 provides a graph of the error ob­
tained in trajectory reconstruction with perfect data. In this case the errors are
due entirely to inaccuracies in the numerical technique. It is evident in compar­
ing the information in Figure 5 with the information in any of the other figures
that noise on the data rather than errors in the numerical technique is primarily
responsible for errors in trajectory reconstruction. For instance compare the
95% critical error value in Figure 2 at 40 km, to the deterministic error at 40
km as given in Figure 5. The value from Figure 5 is smaller than the corre­
sponding value from Figure 2 by an order of magnitude. The values of Figure 5
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may be thought of as the values toward which the errors in trajectory recon­
struction would asymptotically tend as the data became increasingly more ac­
curate. As such these values represent the limit of how much can be purchased
by improvement in data quality. Clearly there is substantial room for
improvement.
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APPENDIX

OPTIMAL AND SUB OPTIMAL MONTE CARLO TECHNIQUES
FOR ESTIMATING CRITICAL VALUES

One usually employs a Monte Carlo technique in order to estimate a
parameter associated with a probability distribution. In this study we have
been concerned with the Monte Carlo estimation of critical values of a distri­
bution. What follows below is an analysis of both an optimal and a sub optimal
Monte carlo technique for estimating critical values.

Given a sample of N independent valuations of a random variable, the
"optimal" processing of this data in order to estimate the critical value of the
random variable which corresponds to probability P can be very simply
described. Let K be the smallest integer which is larger than NP. Linearly
order the samples in descending order of magnitude. The K th number in such
a list is taken as the estimate of the critical value corresponding to probability
P. We have yet to define in what sense such an estimate is optImal nor have we
specified how the quality of the estimate depends on the sample size N.

In order to discuss these 'questions, it is first necessary to analyze the proba'
bility structure of the following experiment. Choose a probability P according
to a uniform probability law. Then perform N independent Bernoulli trials with
probability of success P. Divide the number of successes in N trials by Nand
call the result Pl. The result of the experiment is the two tuple (P, Pi). If N
is sufficiently large, then an application of the normal approximation to the bi­
nomial distribution yields the conditional probability density function (p.d.f.) of
P given that P' was fixed at some value a , 0 < a < 1 as

F(P) (1)

Whenever one performs N Bernoulli trials where the probability of success is
unknown, and the ratio of the number of successes to N is a, then equation 1 may
be considered as an approximation to the p.d.f. of the true probability of
success P.

13



With regard to the previously defined estimation procedure, the Bernoulli
trials may be thought of as the independent sampling from the distribution and
success in a trial can be defined as the probability of exceeding our estimated
critical value. Since we choose this critical value such that the ratio of suc­
cesses to trials is approximately a, equation 1 is the approximate probability
density function of the true probability of the random variable in question ex­
ceeding our estimated critical value. The maximum value of the right side of
equation 1 is achieved when P = a. Thus the maximum likelihood estimate of
the probability level associated with the estimated critical value is a. It is in
this sense that the estimate is optimal.

We would like to obtain a region about the point P = a which would contain
say 95% of the area under the curve defined by equation 1. If such regions could
be constructed, then questions concerning the accuracy of the estimation tech­
nique could be adequately answered. To do this we substitute a probability
density function whose integrated values are tabulated and which has the prop­
erty that a 95% critical region about a contains more than 95% of the area under
the p.d.f. defined byequation 1. A hint as to how this could be done is obtained
by observing that the following inequality is valid for 0 < P < 1

1_ ~ VP (l - P)
2/N N

The substitution of the left side of inequality 2 for the expression on the right
side transforms the right side of equation 1 into

g (P) = 1 1[P -a

J
2-1exp-- -

1277 -- 2 lIN
2 IN 2

(2)

(3)

Equation 3 provides the p.d.f. of a normal random variable with expectation
a and standard deviation equal to 1/2 IN. In order to determine if this distri­
bution has the necessary properties as a bound on the p.d.f. of equation 1, we
must discover for what range of values g(P) bounds F(P). This is done by ob­
taining an expression in P for the log of the ratio of g(P) to F(P). The values of
P for which this expression is positive determines the region for which g(P)
bounds F(P). After considerable algebraic manipulation, the inequality to be
solved takes the following form.

o < P(l - P) LN 2 Ip(l - P) + (P - a) 2 N (4p 2 - 4P + 1)

14
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It is readily shown that if P is in the region

(5)

then inequality 4 is satisfied. The area under g(P) in this region is .05. The
area under F(P) in this region must be less than this value. Thus the p.d.f. of
equation 3 has the desired properties as a bound.

It now becomes easy to determine the relationship between the accuracy of
the estimation technique and the sample size N. If Q is the estimated probability
level 'associated with the critical value, then one is certain to a confidence level
of .95 that the true probability level will not differ from Q by more than 1/1N:
To be certain to this confidence level that the estimated probability level is not
incorrect by more than .01, one needs a sample size of 10,000. If a confidence
level of .99 is desired, then a sample size of 15,000 is needed.

The previous discussion has outlined the standard Monte Carlo technique
for obtaining optimal estimates and has indicated the relationship between
sample size and the accuracy. The technique has shortcomings, one practical
and the other theoretical. To start with the practical difficulty, the technique
can be demanding computationally if large sample sizes are involved. All the
sample values must be stored in the computer at one time in order to implement
any ofthe algorithms whose execution times are not prohibitive and in some
circumstances this is not possible. The theoretical difficulty is that the optimal
technique permits us to make probabilistic statements concerning the true
probability level associated with our estimate of, say, the critical value associ­
ated with the .05 probability level. But we can say nothing probabilistically about
the correct value of the critical value associated with the .05 probability level.
For instance it could be useful in many circumstances to specify an interval
and be certain to a given confidence level that the true critical value is in the
interval. There exist so-called sub optimal Monte Carlo estimation techniques
which can provide such information and which algorithmically are more tract­
ible than the optimal technique. One such technique, the one that was utilized
to obtain the results quoted in the body of this report will now be described.

Suppose one obtains K batches of samples each containing N values and
all the values are assumed to be independent. For each of the K batches we can
process N samples in the batch in the optimal fashion described previously and
thus obtain K numbers X" i ~ K all of which are estimates of the critical value

1

X associated with a probability level Q. Each of these estimates is equally
likely to be less than as greater than the correct critical value X. Thus the

15



number of our K estimates which exceed X is a binomial random variable with
expectation K/2 and variance K/4. Using the usual normal approximation to the
binomial distribution we can infer to a confidence level of .99, that X is smaller
than at least M 2 of the K values where M 2 is the largest integer which is
smaller than K/2 + 3 I K/2 and that X is larger than M 1 of the values where M1

is the smallest integer which is larger than K/2 - 3 iK/2. The significance of
these facts becomes apparent when we state them in the following logically
equivalent form. Suppose we order the K estimates of X in ascending order of
magnitude. Then one is sure to a confidence level of .99 that the correct criti­
cal value X lies between the value in the sequence indexed by M1 and the value
in the sequence indexed by M2 • Thus by this technique we have succeeded in
structuring an interval in which we are certain to a confidence level of .99 the
correct critical value X resides. The algorithmic advantages of this technique
rest chiefly in the fact that only one batch of values at a time need be stored in
the computer. There are also advantages in terms of computing speed.

While rigorous statistical results concerning the accuracy of this technique
are difficult to obtain, it is intuitively evident how the batch size N and the num­
ber of batches K influence the accuracy. The number N determines the accuracy
of each individual estimate, that is, N determines how widely scattered the esti­
mates are about the true value X and thus how large the interval which is ex­
pected to contain X will be. If N is small these estimates will be widely scattered
and the interval will be much larger than necessary and thus too conservative.
The impact of the number of batches K on the accuracy of the technique is more
subtle but nevertheless quite significant. First, if K is too small the normal ap­
proximation to the binomial distribution becomes invalid and serious errors can
result. In addition to this factor there is the fact that we are not at liberty to
choose any confidence level we wish since there are only a finite number of
intervals that this technique permits one to choose. We pick the interval whose
confidence level bounds most closely the desired confidence level. The larger
the value of K which is chosen, the better the quality of this bound.

NASA-GSFC COML.• Arlington, Va.

16


